IED RELATING TO OIL AND GAS BURNERS
FOR INDUSTRIAL USE

Nigel Webley
Group Technical Director
Hamworthy Combustion
Tel: 01202 662754
E-mail: nwebley@hamworthy-combustion.com
Website: www.hamworthy-combustion.com

JOINT MEETING OF THE COAL RESEARCH FORUM, (CRF), ENVIRONMENT DIVISION, THE
COMBUSTION ENGINEERING ASSOCIATION, (CEA) AND THE ROYAL SOCIETY OF CHEMISTRY
ENERGY SECTOR, (RSC-ES)

IMPERIAL COLLEGE LONDON - THURSDAY 22nd SEPTEMBER 2011.
Notice

The information contained in these materials is for informational purposes only and is provided “AS IS”, without warranties of any kind. Your use of the information contained herein is at your sole risk. We expressly disclaim any express or implied representations, warranties or guaranties, including without limitation, the implied warranties of merchantability and fitness for a particular purpose. We will have absolutely no liability (whether direct, indirect or consequential) in connection with these materials (and/or the information contained therein) including without limitation, any liability for damage to person or property. We also reserve the right the make subsequent changes to the materials without prior notice. For purposes of this notification, “We” includes Hamworthy Combustion, John Zink Company, LLC, and their affiliates and their respective employees, partners, principles, agents and representatives, and any third-party providers or sources of information or data.
EU Directive 2010/75/EU

- Industrial Emissions Directive (IED)
- Integrated Pollution Prevention and Control (IPPC)
- Member States transpose into National Laws
Combination of Existing Directives into IED

- Large Combustion Plant directive (LCPD);
- Integrated Pollution Prevention and Control directive (IPPCD)
- Waste Incineration directive (WID)
- Solvent Emissions directive (SED)
- Other directives relating to Titanium dioxide
UK Timetable

- Transposition into UK law by 6 January 2013
- New plant compliance from 6 January 2013
- Existing installations (but not existing LCP) comply by 6 January 2014
- Other activities not currently part of IPPC comply by 6 July 2015
- Existing LCP compliance from 1 January 2016
Large Combustion Plant – NOx Emissions

Emission Limits - Oil Firing

<table>
<thead>
<tr>
<th>Thermal Input</th>
<th>New Plant</th>
<th>Existing Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-100 MW</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>100-300 MW</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>>500 MW</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

Emission Limits - Gas Firing

<table>
<thead>
<tr>
<th>Fuel</th>
<th>New Plant</th>
<th>Existing Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Other (includes COG and BFG)</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>
Large Combustion Plant – Dust and CO Emissions

Particulate (dust) and CO emissions apply equally to new and existing plant

<table>
<thead>
<tr>
<th>Emission Limits - Oil Firing</th>
<th>Emission Limits - Gas Firing</th>
</tr>
</thead>
<tbody>
<tr>
<td>dust in mg/Nm³ (corrected for dry gas at 3% oxygen)</td>
<td>dust and CO in mg/Nm³ (corrected for dry gas at 3% oxygen)</td>
</tr>
<tr>
<td>Thermal Input</td>
<td>Fuel</td>
</tr>
<tr>
<td>50-100 MW</td>
<td>General</td>
</tr>
<tr>
<td>100-300 MW</td>
<td>BFG</td>
</tr>
<tr>
<td>>500 MW</td>
<td>Steel Industry Gas</td>
</tr>
<tr>
<td>dust</td>
<td>dust</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>
Large Combustion Plant – SO₂ Emissions

SO₂ emissions apply equally to new and existing plant

<table>
<thead>
<tr>
<th>Thermal Input</th>
<th>SO₂ (mg/Nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-100 MW</td>
<td>200</td>
</tr>
<tr>
<td>100-300 MW</td>
<td>200</td>
</tr>
<tr>
<td>>500 MW</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel</th>
<th>SO₂ (mg/Nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>35</td>
</tr>
<tr>
<td>LPG</td>
<td>5</td>
</tr>
<tr>
<td>COG</td>
<td>400</td>
</tr>
<tr>
<td>BFG</td>
<td>200</td>
</tr>
</tbody>
</table>

SO₂ in mg/Nm³ (corrected for dry gas at 3% oxygen)
What Can Be Achieved?

Typical Burners for Fire Tube Boilers
Individual Burners up to 25 MW

<table>
<thead>
<tr>
<th>Fuel</th>
<th>NOx</th>
<th>CO</th>
<th>SO₂</th>
<th>dust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td><80</td>
<td><5</td>
<td>n/a</td>
<td><5</td>
</tr>
<tr>
<td>Lpg</td>
<td><200</td>
<td><5</td>
<td>n/a</td>
<td><5</td>
</tr>
<tr>
<td>Gas Oil</td>
<td><180</td>
<td><50</td>
<td>n/a</td>
<td><20</td>
</tr>
<tr>
<td>HFO</td>
<td><550</td>
<td><100</td>
<td>1700 per 1% in fuel</td>
<td><150</td>
</tr>
</tbody>
</table>

Above emissions are achievable without post-combustion cleaning systems, i.e. based on low NOx burner technology only.
Packaged Burners for Fire Tube Boilers

- Gas, Oil and Dual Fuel Burner
 Sizes from 3 to 25 MW
- NOx reduction through air and/or fuel staging
- Low CO across turn-down range
- Wide turn-down range 6:1 or greater
- Excessive SO$_2$ and dust emissions only from HFO combustion – depend on fuel composition
- HFO NOx is higher due to N in fuel
What can be Achieved?

Typical Burners for Water Tube Boilers
Individual or Multi-Burner Installations
Burner Sizes from 3 to 100 MW
Multi-Burner Boilers up to 600 MW

Achievable Emissions – Power Burners

<table>
<thead>
<tr>
<th>Fuel</th>
<th>NOx</th>
<th>CO</th>
<th>SO₂</th>
<th>dust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td><100</td>
<td><5</td>
<td>n/a</td>
<td><5</td>
</tr>
<tr>
<td>Lpg</td>
<td><100</td>
<td><5</td>
<td>n/a</td>
<td><5</td>
</tr>
<tr>
<td>Gas Oil</td>
<td><100</td>
<td><50</td>
<td>n/a</td>
<td><20</td>
</tr>
<tr>
<td>HFO</td>
<td><350</td>
<td><100</td>
<td>1700 per 1% in fuel</td>
<td><100</td>
</tr>
</tbody>
</table>

Above emissions are achievable without post-combustion cleaning systems i.e. based on low NOx burner technology only.
Power Burners for Water Tube Boilers

- Gas, Oil and Dual Fuel Burner Sizes from 3 to 100 MW
- NOx reduction through air and/or fuel staging. BAT is less than 20 mg/Nm3 of NOx gas firing
- Low CO across turn-down range
- Wide turn-down range 6:1 or greater
- Excessive SO$_2$ and dust emissions only from HFO combustion – depends on fuel composition
- NOx from HFO depends on fuel nitrogen but can be less than 350 mg/Nm3 with low NOx burner technology
Factors Affecting Burner NOx Emissions

- Excess air
- Air Preheat
- Firing Intensity
 - Heat Release per Furnace Volume
- Turbulence and Mixing
- Fuel Composition
Post Combustion Emissions Reduction

- Costly systems applicable mainly for larger plant i.e. high pressure steam boilers
- In-furnace NOx reduction
- Flue Gas Acid Gas Scrubbing
- Dust Removal Systems
In-Furnace Systems

- **Flue Gas Recirculation (FGR)**
 - NOx reduction up to 75%
 - Some burners can use 30% or more FGR
 - Additional or larger fan required – increased electricity use
 - Increases mass flow

- **Water Injection through Burner**
 - NOx reduction up to 20%
 - Increases mass flow
 - Reduces efficiency

- **Steam injection in (Gaseous) Fuel**
 - NOx reduction up to 40%
 - Can use low pressure ‘waste’ steam
 - up to 0.5 kg / kg of fuel

- **Steam injection in Air**
 - NOx reduction up to 25%
In-Furnace Systems, *Continued*

- **Over-fire Air (OFA) or After Burner Air (AAP)**
 - Applicable for multi-burner systems
 - Air Ports above top row of burners
 - Burners operate sub-stoichiometrically
 - Use CFD to aid design
 - NOx reduction up to 40%

- **Row Staging**
 - Lower Burners operate sub-stoichiometrically
 - Higher burners operate with higher excess air
 - NOx reduction up to 10%
In-Furnace Systems, Continued

- Selective Non-Catalytic Reduction (SNCR)
 - In-furnace injection of ammonia or urea
 - Limited temperature window (900 to 1000 °C)
 - Not suitable for all applications
 - NOx reduction 40 to 80%
 - Risk of ammonia ‘slip’
 - Ammonia emission limit <5 mg/Nm³

- Re-burn
 - Similar to OFA but with additional gas burning downstream in furnace
Post Combustion Gas Cleaning

- **SO2 Removal**
 - Wet scrubbing
 - Packed bed or venturi
 - Dry scrubbing
 - Lime injection in bag house
 - Efficiency > 95% is possible

- **Dust Removal**
 - Bag House
 - ESP
 - Efficiency > 95% is possible
Post Combustion Gas Cleaning

NOX Reduction

- Selective Catalytic Reduction (SCR)
 - Injection of ammonia or urea
 - Catalyst bed to achieve efficiency
 - Capable of operating at low temperature
 - Suitable for installation after boiler and heat recovery
 - NOx reduction >90%
 - Ammonia emission limit <5 mg/Nm³
Terms and Conditions

- For retrofit applications, specific limits may not always be achievable due to furnace shape and firing intensity.
- SO_2 and particulate emissions depend on fuel composition.
- 1% S \rightarrow 1700 mg/Nm3 of SO_2.
- Ash in fuel is unchanged by combustion process.
How Can NOx Limits Be Achieved?

Emission Limits - Oil Firing

<table>
<thead>
<tr>
<th>Thermal Input</th>
<th>New Plant</th>
<th>Existing Plant</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-100 MW</td>
<td>300</td>
<td>450</td>
<td>Can be achieved on some fire-tube boilers with gas oil and HFO firing and in-furnace techniques</td>
</tr>
<tr>
<td>100-300 MW</td>
<td>150</td>
<td>200</td>
<td>Requires SNCR or SCR systems for HFO combustion, low NOx burner technology for gas oil combustion</td>
</tr>
<tr>
<td>>500 MW</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Emission Limits - Gas Firing

<table>
<thead>
<tr>
<th>Fuel</th>
<th>New Plant</th>
<th>Existing Plant</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>100</td>
<td>100</td>
<td>Achievable with low NOx burner technology in all applications</td>
</tr>
<tr>
<td>Other (includes COG and BFG)</td>
<td>100</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

NOx limits are in mg/Nm³ (corrected for dry gas at 3% oxygen).
Summary

- Gas Firing Emission limits can generally be achieved with low NOx burner technology only - for most commercially available fuels
- Where fuels contain sulphur, ash or nitrogen (e.g. HFO) post combustion gas cleaning systems are almost certainly required
- Oil firing NOx emissions can generally be achieved with a combination of low NOx technology and in-furnace techniques
- Consideration of furnace and burner design together for new installations will be important for minimisation of emissions